
WI -TR-91-1069

AD-A238 259
IlI Iill I l ill II II ll

ADA COMPILER EVALUATION CAPABILITY

Tom Leavitt
Kermit Terrell

Boeing Military Airplanes
P 0 Box 7730
Wichita KS 67277-7730

July 1991

Interim Report for Period November 1989 - November 1990

DTIC_
ELECTE -

Approved for public release; distribution is unlimited. U9

E D

AVIONICS DIRECTORATE 91-04653
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

91 7 10 120

UNCLASSIFIED
.JCUQ!TY' CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE Mo. 0704-0788

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING OrGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Boeing Document Number WL-TR-91-1069

D500-12482-1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) Avionics Directorate (WL/AAAF)

Boeing Military Airplanes Wright Laboratory

6c. ADDRESS (City, State, and ZIP Code) 7o. ADDRESS (City, State, and ZIP Code)

Post Office Box 7730 WPAFB OH 45433-6543

Wichita KS 67277-7730

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F33615-86-C-1059

Ada Joint Program Office -

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Room 3EI14 (1211 S. Fern Street) PROGRAM PROJECT TASK WORK UNIT

The Pentagon ELEMENT NO. NO. NO ACCESSION NO.

Washington DC 20301-3080 63756) 2853 01 03
11. TITLE (Include Security Classification)

The Ada Compiler Evaluation Capability

Final Technical Report Release 2.0
12. PERSONAL AUTHOR(S)

Tom Leavitt. Kermit Terrell
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) j15. PAGE COUNT

Interim FROMS . 9TNq_ TO N ,, July 1991 24

16. SUPPLEMENTARY NOTATION

ACEC Version 3.0 is currently under development

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Evaluation Test Suite

09 02 Performance Ada

I Usability Compiler
19. ABSTRACT (Continue on reverse f necessary and identify by block number)

This document reviews the findings and lessons learned in accomplishing the

development of the Ada Compiler Evaluation Capability Version 2.0. This version

added 300 new performance tests, assessors for program library systems, symbolic

debuggers, and system diagnostics, a new tool to simplify the preparation of

input to median and a Single System Analysis Tool. This report focuses on the

improvements made to the testsuite, details the technical advantages of the

improvements and provides a list of enhancements under consideration for ACEC

Version 3.0.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
-AUNCLASSIFED/UNLIMITED E! SAME AS RPT . DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL J22b TELEPHONE (Include Area Code) 22. OFFICE SYMBOL

Raymond Szymanski '_-J3)4_*5-3947 WL/AAA F

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASS FICATION OF THIS PAGE

UNCLASSIFIED

ABSTRACT

This Final Technical Report for the Ada Compiler Evaluation Capab~lity reviews the findings
and lessons learned in accomplishing Phase 3 of the project.

Accession For
NTIS GRA&I -

DTIC TAB
Unannounced
Justification

Dj-
Distribution/

Availability Codes
Avail and/or

Dist Special

3

ACEC
Final Technical Report

Contents

1 SCOPE5
11IDENTIFICATION 5

1L. -),il . .

1.3 INTRODUCTION

2 APPLICABLE DOCUMIENTS 7
2.1 GOVERNMENT DOCUMENTS
2.2 NON-GOVERNMENT DOCUMENTS

3 ANALYSIS OF TIlE TEST SUITE 8
3.1 CONFIRMED EXPECTATIONS. 10
3.1.1 MEDIAN 10
3.1.2 Single System Analysis 10
3.1.3 Conventions For Valid Portable Test Problems. 10
3.1.4 INCLUDE. 11
3.1.5 Timing Loop Code. 11
3.1.6 FORMAT-MEDIAN Interface 13
3.1.7 Guides 14
3.1.8 Assessors 14
3.1.9 Portable Math 15
3.2 PROBLEMS ENCOUNTERED 16
3.3 MEDIAN ANALYSIS LIMITATIONS IS
3.4 POSSIBLE ENHANCEMENTS 19

4 SUMMIARY 22

5 NOTES 23
5.1 ABBREVIATIONS ANF) ACRONYS 23

4

1 SCOPE

This section identifies the Ada Compiler Evaluation Capability (ACEC) Release 2.0 product,
states its purpose, and summarizes the purpose and contents of this Final Technical Report.

1.1 IDENTIFICATION

This is the Final Technical Report for the ACEC Release 2.0. It was developed by Boeing's
ACEC group under contract to the Wright Research and Dcvelopment Center.

The first release of the ACEC program developed a Software Product consisting of a suite
of benchmark test programs, support tools, a Reade, s Guide, a User's Guide, and a Version
Description Document (VDD). The second release of the ACEC corrected problems found in
the first release; added approximately 300 new performance tests, assessors for program library
systems, symbolic debuggers, and system diagnostics, a new tool to simplify the preparation
of input to MEDIAN, and a Single System Analysis (SA) tool; and upgraded supporting
documentation to permit a user to assess the performance of Ada compilation systems.

1.2 PURPOSE

The purpose of this document is to review the problems encountered and the lessons learned
in the process of developing the second release of the ACEC Software Product.

The descriptions on how to use the product have been presented in the Guides. Information
contained in the Guides will not be repeated here.

The numeric results of the ACEC Release 2.0 testing are presented in the ACEC Software
Test Report for Release 2.0 and will not be repeated here.

1.3 INTRODUCTION

The ACEC group in Boeing Wichita's Engineering Software and Languages Department tested
the ACEC Release 2.0 in November - December 1989. The ACEC was tested on 4 of the same
5 trial compilation systems (but with upgrades) that were used in the first release of the ACEC;
DEC. TeleSoft, 1750A cross compiler (these first 3 were VAX hosted), and the Apollo. The
Silicon Graphics was used this time in place of the Harris compilation system.

The ACEC Release 2.0 Software Product consists of:

" A suite of performance test programs

" A set of supporting packages

These include programs to test the accuracy of elementary math functions, programs to
test the accuracy of the system clock, programs to include the timing loop in the test
programs, and a portable implementation of a math library.

5

" A set of analysis tools

These include FORMAT, MEDDATACONSTRUCTOR, MEDIAN and Single System

Analysis (SSA)

* A set of assessors for diagnostics, symbolic debuggers, and program library systems

" Sample command files to compile and execute the tools and tests for a VMS and for a

UNIX based system which can be used as guides for porting to other systems

This report assumes that the reader is familiar with the ACEC Release 2.0 User's i:e

the Reader's Guide, and the Version Description Document (VDD). Individual test problems

are referred to by name (in capitals) in this report. The reader should refer to tile VDD Release

2.0 for 3 description of the problem. Information from the Software Test Report Release 2.0 is

also referred to.
This document reviews the development of the second release of the test suite and sup-

porting tools. It gives an analysis of results and a review of the lessons learned.

6

2 APPLICABLE DOCUMENTS

The following documents are referenced in this guide.

2.1 GOVERNMENT DOCUMENTS

MIL-STD-1815A Reference Manual for the Ada Programming Language (LRM)

2.2 NON-GOVERNMENT DOCUMENTS

D500-12470-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)

User's Guide Release 2.0
Boeing Military Airplanes
P.O. Box 7730
Wichita, Kansas

D500-12471-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
Reader's Guide Release 2.0

Boeing Military Airplanes

D500-12472-1 Ada Compiler Evaluation Capability (ACEC)
Version Description Document (VDD) Release 2.0
Boeing Military Airplanes

D500-12467-1 Ada Compiler Evaluation Capability (ACEC)
Software Test Report Release 2.0
Boeing Military Airplanes

Understanding Robust and Exploration Data Analysis,
by Hoaglin, Mosteller, and Tukey
John Wiley & Sons, Inc, 1983

7

3 ANALYSIS OF THE TEST SUITE

The numeric values obtained by executing the second release of the test suite were presented

in the Software Test Report Release 2.0 and will riot be duplicated here.
The following table displays the test problems where one of the quartiles was flagged

by MEDIAN as exceptional. Such highly variable test problems might suggest cases where
systems are not performing comparable operations. These lines were extracted verbatim from
the MEDIAN report.

TEST PROBLEM

NAME I MIN LOWER MEDIAN UPPER MAX I SPREAD

1016 1 0.27- 0.34- 1.00 2.90+ 3.81+ 1 8.41

1020 1 0.27- 0.23- 1.00 3.58+ 3.67+ I 12.79
1024 I 0.15< 0.25- 1.00 3.96+ 22.48> 1 15.71

1025 1 0.04< 0.25- 1.00 3.93+ 4.59+ 1 15.45

1026 1 0.29- 0.30- 1.00 3.33+ 26.45> 1 11.10
1027 1 0.21- 0.29- 1.00 3.51+ 25.28> 1 12.30

1028 1 0.07< 0.37- 1.00 2.68+ 6.59> 1 7.17
1030 1 0.07< 0.38- 1.00 2.66+ 6.57> 1 7.10
I08020_1 1 0.20- 0.28- 1.00 3.63+ 4.01+ 13.17

10-80-20-2 1 0.12< 0.17< 1.00 5.90> 6.37> 1 34.80

I0-80-20-3 1 0.09< 0.33- 1.00 3.04+ 3.57+ 1 9.22
IOINTER3 I 0.10< 0.13< 1.00 7.73> 11.20> 1 59.82
IOPATTERN2 1 0.07< 0.15< 1.00 6.67> 9.51> 1 44.49

IOPATTERN3 1 0.07< 0.16< 1.00 6.13> 8.80> 1 37.52
IOPATTERN4 1 0.08< 0.17< 1.00 5.73> 9.48> 1 32.87
I0_PATTERN6 I 0.05< 0.12< 1.00 8.21> 13.52> 1 67.45

IOPATTERN7 I 0.05< 0.13< 1.00 7.74> 12.04> 1 59.93
IOPATTERN8 I 0.06< 0.13< 1.00 7.42> 12.81> 54.99

IORECURI I 0.12< 0.21- 1.00 4.72+ 6.68> 1 22.27

IORECUR2 1 0.21- 0.28- 1.00 3.62+ 9.24> 13.13

IORECUR3 1 0.27- 0.35- 1.00 2.84+ 7.19> 1 8.06

IOSCAN4 1 0.07< 0.16< 1.00 6.31> 10.35> 1 39.77

I0_SCAN8 1 0.05< 0.12< 1.00 8.49> 14.77> 1 72.01

55153 1 0.06< 0.35- 1.00 1.21 4.95+ 3.41

SS602 I 0.06< 0.37- 1.00 1.21 5.12+ 1 3.22
SS753 1 0.09< 0.35- 1.00 1.28 5.61> 3.62

SS754 I 0.09< 0.37- 1.00 1.25 5.57> 1 3.35
SS802 I 0.03< 0.24- 1.00 1.19 1.43 1 5.04

8

The following list describes the features for each fiagged test problen ,csponsible for the
performance variations as identified by the ACEC group.

TEST PROBLEM

NAME I FEATURES

1016 I References SIZE f,.nction of a DIRECT file. Performance
depends on underlying operating system. Some may not
require disc reference.

1020 I References END.OFFILE function of a SEQUENTIAL file.
Performance depends on underlying operating system. Some

may not require disc reference.

1024 1 Console I/O device dependent

1025 Console I/O
1026 Console I/O
1027 Console I/O
1028 Console I/0
1030 Console I/O

I0-80-201 1 Direct file random reads from a small set of records
1080_20_2 Direct file random reads from a small set of records
1080_20_3 Direct file random reads from a small set of records
IOINTER3 Direct file random read/write in a small set of records
IOPATTERN2 Direct file random reads from a small set of records
IOPATTERN3 I Direct file random reads from a small set of records
iC-7ATTn-:, : 2irect fiiz andcm i,,d rz a small z-t of records
IOPATTERN6 I Direct file random writes to a small set of records
IOPATTERN7 I Direct file random writes to a small set of records
IOPATTERN8 I Direct file random writes to a small set of records
TORECUR1 I Direct file random reads from a small set of records

IORECUR2 I Direct file randorn reads from a small set of records
IORECUR3 I Direct file random reads from a small set of records
IOSCAN4 I Direct file random reads from a small set of records

IO.SCAN8 I Direct file random writes to a small set of records

SS153 I Raises exceptions
SS602 I Raises exceptions

SS753 I Raises exceptions

SS754 Raises exceptions
SS802 Call on CALENDAR.SECONDS

9

3.1 CONFIRMED EXPECTATIONS

The following subsections list design decisions which worked well

3.1.1 "IEDIAN

If comparing multiple systems. some type of statistical analysis, similar to MEDIAN, is necessary
for practical use of a test suite with more than a handful of test problems The analysis focuses
the attention of the ACEC users on the test problems with 'unusual' results It permits a

form of report-b'y-exception where ACEC users can concentrate their efforts on exploring the

test problems with anomalous performance. Since most test problems vill not be flagged bv

IMEDIAN as outliers. ACEC users will be able to "skim' over most of them and concentrate

on those where large differences between systems were observed

'.,Vithout an analysis tool, a test suite would require users to "understand" each of the test

problems, at least to know if a result or, one system was good. bad, or indifferent The residual
matrix is very helpful since it establishes a normalized metric for test results - a residual close
!o one is 'typical " No analysis tool can extract more information from a set of data than is

implicit in the collection of 'raw" measurements. but it can make the relationships between

data more apparent It would be very easy to overlook the fact that a system executes some

test problems twice as fast as typical when all the data is presented as one large table of timing

measurements It is important to prevent users from being overwhelmed by the volume of data

and MEDIAN serves this role

3.1.2 Siiigle Systeiii Aiialsis

The Single System Analysis tool provides an automated way of comparing and disphivng results

from sets of related performance test problems The ACEC team has manually compared results

of related tests before the development of this tool, however, the speed and automated nature

oi the tool now make it much simpler to do. his ease of usf cncourngeE ACEC user t- "btain

the full benefits of collecting the performance data.
The Single System Analysis tool is straightforwprd in principle and no unanticipated prob-

lems arose during its development and use other than on the Silicon Graphics. The system

appears to have a problem with exception handling.

3.1.3 Coiveintioins Foi- Valid Portal), -rest Prol)lciis

Writing valid portable benchmarks is not easy. It is necessary to be careful in constructing

test problems so that they are not unduly optimizable This was anticipated and confirmed

past experience. The conventions established for developing tests were generally effective in
precluding unexpected optimizations

10

:.. INCLUDE

INCLUDE is an ACEC support tool used to textually expand Ada source text It is used to
insert the timing loop code into the test programs Refer to the User's Guide for a discussion
on the use of this tool

The decision to use a separate tool to INCLUDE the timing loop code has worked well. It

has permitted flexible nodification of the timing code

* To modify the basic timing loop code as needed

* To switch between Central Processing Unit (CPU) time and elapsed time measiwements

" To accnmmodate :mplemntation dependencies (such as the GETADR calls to measure
,ode expansion size when the labelADDRESS attribute did not work)

:1 .5 11iiiiiitg Loop ('ode

The timing loop cod i- r.-snonsible for measuring the execution time and code expansion for
"..vh test problem It is discussed in depth in the Readers Guide, including the constraints on

,ts design and the conventions ol w.'riting test problems so that the test designer can measure

.'hat was intended
7he timing loop -ode was enhanced from the first release in several ways

I The termination condition for the inner timing loop has incorporated a statistically robust
-onfidence test adapted from Understanding Robust and Exploration Data Analysis. by
Hoaglin. Mlosteller, and Tukev An unreliable neasurement indicator is printed when

either a t-test or an r-test fails - the outer timing loop uses the t-test to terminate with

,onsistent measurpments because this is a more conservative test

This has been a valuable change because it reduces the number of test problems which

are unnecessarily reported as unreliable measurements.

2 rAost of the code associated with the timing loop in STOPTIMAEO has been moved into
a procedure in i1LQ)BAI

This is valuable because it reduces the size of the generated code for multiple problem test

programs and reduces -ompilation time It saves ninetv,-fit, lines nf dcri r- prcnbl-mn

3 The printing of time measurements has been modified so that an exponential format is

used for values less than ten microseconds or greater than one hundred seconds.

This is valuable because using the scheme from the first release, some of the small test

problems on fast machines would be truncated to one significant digit when printed.

making the effort expended to calculate measurements to a five per cent confidence

interval unnece7;arilv precise The processing for large times is also necessary (some of

11

the 1/0 test problems developed for the second release product execute for more than

100 seconds on some of the trial systems) so that FORMAT can recognize the large

times,

4 Sometimes measurement noise makes the timing loop code calculate a small positive time

for test problems which have been optimized into a null. The timing loop was modified

to check whether the code expansion size measurements indicate that the test problem
has bczc optimized into a null and to print a zero time in this case

5 In the first release, the ACEC timing loop reported.all test problems with "uncorrected'

execution times less than the null loop time as zero. The timing loop was modified to test

for the case where subtracting the null loop time from the total problem execution time

tn calculate the effective test problem execution time would produce a negative value

which is larger than can be attributed to measuie:-ent noise. If the computed negative

time is "small' (less than the variations in the null loop during initialization of the timlig

loop in executing each test program). it is reported as zero. A "large" negative value

will result in an unreliable measurement error code.

This change was valuable because it tells users when unusual behavior is observed,

6 The timing loop was modified to detect when a null statement is being evaluated and to

not pefform the maximum number of iterations in this case.

The benefit of this change is that it saves some execution time when running test problems
optimized into null statements.

7 The timing lcop (INITTIME) was modified to explicitly test whether the system has

taken special steps to return a unique value for CALENDAR.TIME each time it is called.

Some operating systems have implemented the time function such that every value is

guaranteed to have a uniqut: value during each day - where their actual clock resolution

is not as accurate as would be necessary to satisfy this system requirement with the

clock value, they simply track the number of calls on the TIME function since the actual

clock "ticked' and return as the function result the actual time plus the number of calls

(having ensured that on their fastest system, the number of calls which can be made

on the TIME function before the clock "ticks' is less than the resolution of the return

type) On these svstems. thp low order hitq are essentiallv itrelps a indirctors of actiial

time. On first encounteiing this behavioi, many programmers may think it is a strange

way for a system to keep time. however it does h-ve utility - some low-level programs

are simplified if they can assume that time-stamps are unique and form a monotonic

sequence. It is typical for Ada systems to "pass-through" the operating system function

for the TIME function, so that this behavior is not hidden from Ada programs. The

first released ACEC timing loop could calculate inaccurate times - such systems render

the software vernier calibration process that theACEC uses futile The second release

12

of the ACEC tests on initialization for this behavior and if detected, uses a large value
for MIN JITTER COMPENSATION in the timing loop to essentially make the ACEC
calculations not rely on the vernier.

This clange is valuable because if it were not compensated for, the ACEC timing loop
could produce inaccurate estimates and error bounds on some systems for fast executing
test probierns.

3.1.6 FORMAT-NIEDIAN Iiterface

The exec tion of the ACEC test suite produces a log file containing performance measurements
for each test run. The log file must be processed before the measurement data can be input to
MEDIAN. The r,,ethod used in the first release to interface the results file and the MEDIAN
analysis tool was awkward. The first release required the user to execute FORMAT to extract a
data aggregate, use a text editor to insert the aggregate into MEDDATA. and then recompile
MEDDATA and MEDIAN.

For the second release. the MED DATA CONSTRUCTOR tool was written to automate
the process of creating a MED-DATA package from the outputs of FORMAT from differ-
ent systems. The user must execute FORMAT to create data aggregates and then execute
MED DATA CONSTRUCTOR to create a MED DATA package containing data for the spec-
ified systems. MED DATA and MEDIAN are then compiled. and MEDIAN is executed. The
user must use a text editor to create a file containing the system names and the names of the
data files to be used by MEDDATACONSTRUCTOR. The user is iiot required to edit the
d 3ta aggregates.

Another approach would have been to combine in one program the functions of FORMAT,
MEDDATACONSTRUCTOR, and MEDIAN. This was not done because the ACEC interface
must deal with bare machines which have limited I/O capabilities.

The method selected permits the collection and processing of results on target machines
which have only a console output device (that is, no way to write to a file for processing by
another program). This constraint limits the design options and the degree of "friendliness"
possible - the ACEC would be friendlier if each test program updated a file to reflect results,
then MEDIAN (or other analysis tools) could read this file.

The current interface provides some important advantages.

1. The order in which a user executes test programs is not important

2. Users do not have to create or update a large positional array. It would be error prone
to manipulate an aggregate with over a thousand entries - the risks of recording results
from one test problem as coming from another test problem would be large. Aggregates
with named associations are helpful here.

13

3. It is a flexible system. It is simple for a user to incorporate additional test programs into
the suite, as long as they avoid naming conflicts with existing test problems. It is sinple
for a user to use MZDIAN to analyze subsets of the data, such as only the tasking tests.

3.1.7 Guides

The writing of effective user documentation is difficult and time consuming. It is also very

important to the usability of a product, particularly when there is no provision for telephone
'hot-lines" for helping users who run into problems.

The ACEC user documentation is extensive (over 400 pages) and comprehensive.
The User's Guide and Reader's Guide present an introduction to the issues involved in

measuring performance. They discuss:

" Compiler optimization

" Aspects of machine design which influence performance

" Pitfalls in measuring system performance

" Statistics of collecting and analyzing performance data

They provide helpful background information to ACEC users about performance evaluation in
general and Ada in particular. They also provide detailed instructions for using the ACEC.

The ACEC Version Description Document (VDD) contains useful information about the

test suite itself and the individual test problems.
The general reaction to the first release of the ACEC documentation was favorable.

3.1.8 Assessors

Release 2 of the ACEC includes new assessors for the Ada program library management system,
the diagnostic messages, and the symbolic debugger. The assessors, especially the debugger
assessor, were found to be more time-consuming to execute than originally predicted. This i;
due to two factors:

* Adaptation effort.

The assessors test a wide range of capabilities and a large number of individual actions
which must be separately adapted to each system. The effort required is significant, even
when the evaluator is familiar with the product.

The program library assessor includes 19 scenarios with 80 separate questions.

The diagnostic message assessor includes 45 scenarios with 455 separate questions.

The symbolic debugger assessor includes 29 scenarios with 118 separate questions.

14

9 Learning time.

There was a learning time required for an evaluator to become familiar with a system
not previously used.

In order to perform the library assessor and the debugger assessor, the evaluator must
learn implementation specific program library and debugger commands and concepts.
It is necessary to adapt the commands used to execute each scenario. The assessors
cover a broad scope, and before deciding that some capability was not supported, it
was necessary to stop and review manuals to make sure that something had not been
overlooked in the initial learning process.

The initial projections for learning time were based on the assumption that the trial
systems would be similar to the system the assessors were developed on. This was overly
optimistic.

We believe that ACEC users will find the effort worthwhile because it will provide them
with more organized information about the capabilities of systems than they would acquire
with a similar amount of time spent in unstructured experimentation. Although vendors
can tell their users that their library system and/or the debugger provide all the useful
capabilities, running the ACEC assessors will assure the testers that the capabilities exist
and that they know how to use them.

3.1.9 Portable Math

The second release of the ACEC added a representation independent version of MATH-DEPENDENT,
greatly increasing the portability of the ACEC provided generic math library and therefore, sim-
plifying the programmer effort required to produce a working math library.

There was one trial system which provided a library which was not usable for an interesting
reason. That system named the provided math library "MATH" - the same name ACEC uses
for its math package. This presents a naming conflict which could not be resolved without
extensive modifications to the source text of the ACEC test programs and analysis tools or
modifications to the source of the implementation provided math library. Since neither of these
alternatives was acceptable, on this system testing proceeded using the ACEC provided portable
math library.

The ACEC mith par'kagp epecifir-ation (Ond ill thp progrimn r,'fv'rcnring thp zperifirntirn)

were changed to be compatible with a subset of the Association for Computing Machinery.
Special Interest Group on Ada, Numerics Working Group (NUMWG) recommendations. This
change may be of increasing value in the future if and when more implementations adapt the
NUMWG recommendations. Only one of the trial systems provided a NUMWG implementation,
and on this trial system there were no problems with using the vendor provided implementation
in place of the ACEC provided math package.

15

3.2 PROBLEMS ENCOUNTERED

During the development of the ACEC, the test suite and tools were executed on multiple
systems both to verify portability of the code, and to provide sample data to demonstrate the
comparative analysis tools. These are the "trial" systems referred to throughout this report.
During this process some implementation errors and restrictions were discovered in the trial
systems, as detailed below:

" Some systems did not support the label'ADDRESS clause (used in the ACEC to measure
code expansion size).

* Most systems do not support tying tasks to interrupts (a Chapter 13 feature).

" Most systems do not support a type'SMALL specifying a fixed point delta which is tiot
a power of two.

" Most systems did not support asynchronous I/O operations - that is, an i/O operation
in a task causes the prwgram. to halt until the I/O completes.

" A few systems failed to always reclaim implicitly allocated space. This prevented some
test problems from completing. The LRM does iiot require that the space be reused, so
this is an implementation restriction rather than an error.

" Some systems restrict the type of files that can be processed. Test problems using a
SEQUENTIALIO instantiated with an unconstrained type (that is, STRING) were not
accepted by many systems, as were problems using sequential and direct files with a
variant record. This feature is not supported by many of the trial systems. On the
DEC Ada system the test problems would not run using the default FORM strings and
a system dependent adaptation was necessary.

* The test problem (SS747) which calls on an assembly language procedure did not work
on all systems. In several cases, the trial systems claim to support the facility, but the
provided documentation was unclear, and the initial attempt to adapt the test problem
failed.

" Capacity limitations - some programs were too large to be compiled by some of the
systems.

e The implementation dependent type SYSTEM.ADDRESS is converted to an integer type
to calculate sizes. The size of this integer type is implementation dependent and may
need to be adapted for use on different systems.

e Some implementations imposed restrictions on length clauses. Several only supported
the declaration of specific predefined sizes. For example, several would not accept a
specification for a three bit wide field.

16

" Preemptive priority scheduling was not supported on all the trial systems. This caused
some of the test problems to report a runtime error.

" Some compilation systems did not support integer types which required more than 16
bits. This restriction prevented some test programs from operating.

* One system kfor an embedded target) did not support any file I/O.

" Some systems did not support an option to specify tasking discipline (time-sliced vs run-
till-blocked). This is not required but tests for it were included in the second release.

" Particularly with the Silicon Graphics system, there were test problems which were mea-
sured as taking zero time but were not NULL statements (they had positive code ex-
pansion sizes, performed non-optimizable operations. and code was generated). In some
cases, when the test programs were rerun, the spurious zero measurements did not reoc-
cur, but this was not universal.

Initial investigation is inconclusive and more testing with the system would be required
to isolate the source of the problem, which might be applicable to other compilation
systems.

Although the portability of the test suite could have been improved by restricting it to
use only the features supported by the most limited of the known Ada implementations, this
was not done. It is important to evaluate all the capabilities of the language. Some of the
features not supported by all systems are important to some users and need to be covered in
a comprehensive test suite.

17

3.3 MEDIAN ANALYSIS LIMITATIONS

One potential criticism of the ACEC product is that the system factors computed by MEDIAN

will not reflect the performance of Ada implementations on the types of applications all users

are interested in. MEDIAN computes system factors by averaging over the test problems. If the

distribution of language features is very different in a user's application than the distribution

in the ACEC test suite, the system factors may not accurately predict performance of different

systems on the user's ultimate application. For example, comparing two systems, one of which
provides floating point support by software simulation and one with hardware support, the

system with software floating point will be slower. For a user whose applications will not use

floating point, the differences due to floating point speed are not important and such a user

would prefer that the speed of floating point operations not influence the evaluation of systems.

The above situation reflects the fact that the system factors are biased by the selection of

test problems. There are several issues involved here:

1. Some limitation is unavoidable. If there was only one test problem, critics could complain
that the problem does not represent the usage of language features they anticipate

for their applications. If there are multiple test problems, covering different language

features, critics could complain that the combination of the test problems does not
reflect their anticipated usage.

2. The limitation is not unreasonable. Users with specific interests may find information
about them - 16 or 32 bit integer operations, execution with or without constraint

checking suppressed, etc.

The ACEC makes heavy use of variables declared in library packages (as contrasted to

variables declared in local scopes). This reflects our expectations of typical usage. The
ACEC also contains test problems using locally declared variables so differences between

scopes can be observed. The fraction of operations on integer, floating-point, and fixed-

point types, and the precisions of the operations are application sensitive, The computed

system factors will reflect the distribution of usages in the test suite. Users interested in

the performance of specific language features can examine the test problems using these
features, by reference to the VDD appendices. If some language features are particularly

slow on one system, MEDIAN will flag test problems using this feature as outliers, drawing

attention to the pprforminr i 511.

3. It is easy for ACEC users to select a subset of test problems (perhaps including additional

test problems they develop themselves) to reflect their expected usage. For example. a

user may decide to ignore all the file I/O test problems if their project is targeted for a

bare machine; for applications targeted to a general purpose multiuser system, it may be

best not to consider the interrupt test problems.

18

3.4 POSSIBLE ENHANCEMENTS

Several possible enhancements to the ACEC product have been mentioned at conferences by
ACEC users. Some of these have been included in the second ACEC release. Those that are
not yet available are defined in the following paragraphs.

Capacity testing

The ACEC does not include any explicit tests designed to systematically determine ca-

pacity limitation at compile, link, or execution time. Some implicit capacity testing is

inherent in the organization of the test suite and the assumption that a system will be

able to compile and execute the programs in the ACEC Software Product. However, it

would be useful to incorporate explicit capacity testing.

" Systematic compile speed testing

The ACEC provides for the recording and analysis (through MEDIAN) of the elapsed

time to compile and link the performance test programs. However, these test programs

are not designed to contain selections of language features (distributions of features)

expected to cause variations in compile/link times. It would be useful to incorporate test
programs explicitly designed to emphasize features expected to result in different compile
times.

* Memory size

It has been suggested that the ACEC be enhanced to include programs to test execution

time memory capacity limits.

" Additional problems

Although large, the ACEC is not exhaustive in its testing. Problems of interest to specific

application areas could be added to increase the utility of the ACEC.

* Reliability of timing measurements

The ACEC timing loop code has evolved during the development of the product, and

there are several enhancements which could be explored in order to improve its ability

to efficiently produce reliable, portable timing measurements. Of particular concern is
tho tpndencv on onp of the' trial qvtom- for iinrotiable coder to he rPortP'd rathlpr than

time measurements - it may be valuable to experiment with increasing the maximum

number of outer timing loop cycles (GLOBAL. MAXITERATION -COUNT and associated

variables, including the values of the array GLOBAL.TVALUE).

User interface

Several users have criticized aspects of the ACEC user interface, as listed below:

19

- Multiple problem programs

Some of the ACEC performance test programs contain multiple problems. When
one problem in a program fails to compile, no results are obtained for any of the
problems in that program unless the ACEC user modified the source program to
correct (or remove) the failing problem. It has been suggested that each test
problem be presented as a separate compilation unit.

- Awkward data interface

The FORMAT - MEDIAN interface in release one has been criticized as awkward
and the time to re-analyze data as long. If MEDIAN were to read a set of FORMAT
aggregates. analysis of subsets of data would be quicker and simpler to perform.
The MEDDATACONSTRUCTOR tool introduced with the second release should

help.

- MATH package

The first release of the ACEC was criticized because significant user effort was
required to adapt the MATH package to a new target. Three steps taken in the

second release should greatly ease this effort.

k In the second release, package MATH is NUMWG compatible, making it easy
to use an implementation provided math library on targets which support the
NUMWG recommendations.

* A representation independent implementation of package MATH DEPENDENT
is provided which makes porting the ACEC provided package GEN-MATH

straightforward.
* The User's Guide discussion of math porting issues has been expanded making

it clear that the users should try to interface to an implementation provided
math library where available.

Weighting of test problems for analysis

There is no current provision for weighting test problems based on importance. Some

users have requested an easy way of isolating test problems of interest to them and of
analyzing performance data emphasizing specific areas. The ACEC users have had, and
continue to have, the option of using MEDIAN on any subset of problems they wanted
to consider. This suggestion is related to the alternative analysis techniqules suggested
for MEDIAN statistical processing.

" MEDIAN statistical processing

Some users have suggested that the ACEC statistical analysis technique be modified

to provide for inference - confidence intervals and significant differences. 1 here is some
statistical research which is suggestive of ways to add confidence estimates while retaining
robust statistical analysis, but the issue would require more study.

20

9 User Documentation

Some users have suggested that the ACEC documentation be expanded to include all
issues which might affect compiler selection.

21

4 SUMMARY

Significant effort was expended to address criticisms of the original ACEC release. All of the
reported problems with Release 1.0 were either addressed in this second release or identified
as possible future enhancements. There were no major surprises with the ACEC Release 2.0
product. The ACEC found there were general improvements in the Ada compilers from Release
1.0 to 2.0. However. there was still one trial system that was barely usable due to system
crashes and destroyed directories.

The new features of this release were: 300 new performance tests (1/0, implicit storage
reclamation, application profile tests, etc.); assessors (library management. symbolic debugger,
and diagnostic messages). the MED-DATA CONSTRUCTOR: and the Single System Analysis
(SSA) tool.

Even though approximately 300 performance tests were added, the total lines of "included"
source remained constant due to a change in the timing loop code. Also, changes to the
example COM files for the performance tests simplified porting. For the new I/O performance
tests, both the file and console I/O tests showed large differences between systems - which
was anticipated. For the new implicit storage reclamation performance tests, it was surprising
to find failing systems.

The assessors evaluate features that were believed to be the most valuable for day to day
usage, but not all of these capabilities are essential to have a usable system. The Diagnos-
tics Assessor proved to be straightforward to execute and easy to adapt. User feedback on
its grading system will give an idea as to its usefulness. The Library ind the Symbolic De-
bugger Assessors required more adaptation effort than was anticipated. Some systems do not
support many of the extensive capabilities explored in these assessors, but the assessors were
designed with future technology in mind. One system. the 1750A cross compiler, did not have
a debugger. Most of the trial systems' program libraries were more fragile than anticipated.

The MED DATA CONSTRUCTOR program was an improvement to the FORMAT -
MEDIAN interface. This program worked as anticipated by significantly reducing the manual
effort needed to format the data for the MEDIAN analysis.

The SSA did not provide any new information, but organized the available data and pre-
sented it so that the user did not have to tediously compare related tests. By prviding a tool
which automates the comparisons of related tests, the SSA will give more insight into system
perfrrmanr with le! pier effort than whpn th- rrmmpnricw had tr o ,w,)e k Iv hind

To execute this ACEC Release 2.0 test suite and assessors through the analysis phase is
not a trivial task. A lot of time, effort and computer resources will be necessary in order
to extensively test an Ada compiler. But, when a user has completely run the ACEC test
suite, assessors and analysis tools, the majority of a compilation systems features will have
been exercised and the evaluator will have a good, overall knowledge of that compiler and
associated capabilities.

22

5 NOTES

This section contains information only and is not contractually binding.

5.1 ABBREVIATIONS AND ACRONYMS

ACEC Ada Compiler Evaluation Capability
ACVC Ada Compiler Validation Capability

BMA Boeing Military Airplanes

CPU Central Processing Unit

I/O Input / Output

LRM (Ada) Language Reference Manual (MIL-STD-1815A)

NUMWG Numerics Working Group (NUMWG)
subcommittee of the Association for
Computing Machinery, Special Interest
Group on Ada

SSA Single System Analysis

TOR Technical Operating Report

VDD Version Description Document

23

